Applications for Local Agency Safety Projects

Disclaimer:

The following interviews and commentaries are for informational exchange only. The views and opinions expressed therein are those of the individual speakers and do not necessarily represent the views and opinions of Hagen Consulting Services or any of their respective affiliates or employees. This one hour webinar will not make you an expert in anything. It is impossible to cover all of the necessary information related to this webinar topic within just a one hour time frame. The user assumes all responsibility for the use of any and all information contained within this webinar. Hagen Consulting Services, LLC assumes no liability for the use of the information contained herein. The information depicted in this presentation may or may not be fictitious. Any similarity to actual persons, living or dead, or to actual events, locations, or firms is purely coincidental. Viewer discretion is advised.

Highway Safety Manual Overview

Part 1: Background

Highway Safety Manual Overview

Part 2: Content

Introduction to the HSM

- What is the HSM?
- Who should use the HSM?
- When should the HSM be used?
- How to use the HSM?
- Where can we get assistance?
- Why should we use the HSM?

An AASHTO Publication that...

- Provides information and tools to conduct quantitative safety analyses.
- Facilitates explicit consideration of safety throughout the project development process.

A compilation of:

- Methods for developing an effective roadway safety management program and evaluating its benefits.
- Predictive methods to estimate crash frequency and severity to support project level decision making.
- Catalog of crash modification factors for estimating the effect of a variety of geometric and operational treatments.

The Highway Safety Manual of 2010

- Methodology is like that for assessing and assuring the adequacy of Capacity
- HSM allows the transportation professional to understand and quantify highway safety performance for informed and balanced decision making

Akin to the HCM, but for safety...

Definitive; represents quantitative 'state-ofthe-art' information

Widely accepted within professional practice of transportation engineering

Science-based; updated regularly to reflect research

HIGHWAY CAPACITY MANUAL 6TH EDITION I A GUIDE FOR MULTIMODAL MOBILITY ANALYSIS

CIENCES · ENGINIERING · MEDICINE

Goal: Make the HSM like the HCM

My Graduate School Years...

HIGHWAY CAPACITY MANUAL

Special Report 209

TRANSPORTATION RESEARCH BOARD National Research Council

2 NRV B3

1985 Highway Capacity Manual

First "modern" Highway Capacity Manual

Worksheet type analysis procedures

Describes "ideal" conditions

Adjustment factors for other than ideal

1985 Highway Capacity Manual

Since then...

Numerous research reports and papers

Updated models and parameters

Updated manuals in 1994, 1997, 2000, 2010

Abandoned worksheet format - SOFTWARE

The LTH Model

1985 HCM greatly over-estimated the capacity of the permitted portion of protected + permitted left turn phasing at signalized intersections

New model for uniform delay for these types of left turn movements

1985 Highway Capacity Manual

First "modern" Highway Capacity Manual

Worksheet type analysis procedures

Describes "ideal" conditions

Adjustment factors for other than ideal

First EVER Highway Safety Manual

Worksheet type analysis procedures

Describes "ideal" conditions

Adjustment factors for other than ideal

WHAT THE HSM IS.....

...Like the HCM

...NOT Like the MUTCD & Green Book

The HSM describes the mathematical relationships for safety performance based upon exposure and roadway conditions
The HSM is an analysis tool only; just like the HCM
The HSM does not have "Standards" nor "Best Practice" guidance
The HSM does not supersede other publications that do.

It's the product of:

- \$7 million, 10-year research program funded by NCHRP, AASHTO & FHWA
- Thousands of hours of effort in reviewing the research results:
 - TRB Task Force on Development of the HSM
 - AASHTO Joint Task Force on the HSM, with members from Safety, Design, and Traffic Engineering

2014 Supplement

\$175 per copy 🛞

The Highway Safety Manual – 1st Edition

Contains Best Science & Research

- Synthesis of previous research
- New research commissioned by AASHTO and FHWA

WHAT IS COVERED IN THE HSM?

PART A: INTRODUCTION, HUMAN FACTORS, & FUNDAMENTALS

23

Who should use the HSM?

Planning
Design
Operations
Maintenance

When should the HSM be used?

Planning
Design
Operations
Maintenance

How should we use the HSM?

Very <u>CAREFULLY</u>!

WHAT IS COVERED IN THE HSM?

Calibration for local conditions

Table 1 Facility Types with Safety Performance Functions

HSM Chapter	Undivided Roadway Segments	Divided Roadway Segments	Intersections			
			Stop Control on Minor Leg(s)		Signalized	
			3-Leg	4-Leg	3-Leg	4-Leg
10 Rural Two-Lane Roads	>		>	>		>
11 Rural Multi-lane Highways	~	~	>	~		~
12 Urban and Suburban Arterials	~	~	>	~	>	~

What are Safety Performance Functions?

Mathematical Regression Models for Roadway Segments and Intersections:

- Developed from data for a number of similar sites
- Developed for specific site types and "base conditions"
- Function of only a few variables, primarily AADT
- Used to calculate the expected crash frequency (crashes/year) for a set of base geometric and traffic control conditions

Purpose of Crash Modification Factors

- Adjusts the calculated SPF predicted value for base conditions to actual or proposed conditions
- Accounts for the difference between base conditions and site specific conditions

Crash Modification Factors - CMFs

CMFs are used to adjust the calculated SPF predicted value for base conditions to actual or proposed conditions

- **CMF = 1.0**: Meets base conditions or the treatment has no effect on the expected crash frequency
- CMF < 1.0: The treatment reduces the expected crash frequency
- CMF > 1.0: The treatment increases the expected crash frequency

CRF = 1 - CMF

IMPORTANT NOTE:

The CMFs from Part C are used to adjust the calculated SPF predicted value for base conditions to actual or proposed conditions. These are **NOT** the same as the CMFs in Part D or those that you get from the CMF Clearinghouse.

SPF Prediction Model for Base Conditions: Rural Two-Lane Roadway Segments

 $N_{spf-rs} = AADT \times L \times 365 \times 10^{-6} \times e^{(-0.312)}$

N_{spf-rs} = predicted total crash frequency for roadway segment base conditions (crashes/year)

AADT = average annual daily traffic volume (vpd)

L = length of roadway segment (miles)

35

SPF Prediction Model for Base Conditions: Rural Two-Lane Roadway Segments

 $N_{spf-rs} = AADT \times L \times 365 \times 10^{-6} \times 0.732$

N_{spf-rs} = predicted total crash frequency for roadway segment base conditions (crashes/year)

AADT = average annual daily traffic volume (vpd)

L = length of roadway segment (miles)
Base Conditions for Rural Two-Lane Roadway Segments:

Lane Width: Shoulder Width: Shoulder Type: **Roadside Hazard Rating: Driveway Density:** Grade: Horizontal Curvature: Vertical Curvature: Centerline rumble strips: TWLTL, climbing, or passing lanes: Lighting: Automated Speed Enforcement:

12 feet 6 feet Paved 3 <5 driveways/mile 0% None None None None None None

Apply CMFs to the SPF Base Model

$$N_{predicted-rs} = N_{spf-rs} \times (CMF_{1r} \dots CMF_{xr}) C_{r}$$

Where:

N_{predicted-rs} = predicted average crash frequency for an individual roadway for a specific year (crashes per year)
 N_{spf-rs} = predicted average crash frequency for base conditions for an individual roadway segment (crashes per year)
 CMF_{1r} ... CMF_{xr} = Crash Modification Factors for individual design elements

C_r = calibration factor

Base Conditions for Rural Two-Lane Roadway Segments:

Lane Width: Shoulder Width: Shoulder Type: **Roadside Hazard Rating: Driveway Density:** Grade: Horizontal Curvature: Vertical Curvature: Centerline rumble strips: TWLTL, climbing, or passing lanes: Lighting: Automated Speed Enforcement:

12 feet 6 feet Paved 3 <5 driveways/mile 0% None None None None None None

Crash Modification Factor- Lane Width $CMF_{1r} = (CMF_{ra} - 1.0)p_{ra} + 1.0$

	AADT (veh/day)				
Lane Width	< 400	400 to 2000	> 2000		
9-ft or less	1.05	1.05+2.81x10 ⁻⁴ (AADT-400)	1.50		
10-ft	1.02	1.02+1.75x10 ⁻⁴ (AADT-400)	1.30		
11-ft	1.01	1.01+2.5x10 ⁻⁵ (AADT-400)	1.05		
12-ft or more	1.00	1.00	1.00		

CMF for Lane Width on Roadway Segments (CMF_{ra})

NOTE: The collision types related to lane width to which this AMF applies include single-vehicle run-off the-road and multiple-vehicle head-on, opposite-direction sideswipe, and same-direction sideswipe accidents.

P_{ra} = proportion of related crashes. Default value = 0.574 **District 7 has good data: use CDMS to get factors**

But what about the intersections?

SPF Models for Rural Two-Lane Intersections:

1) 3-Leg Stop Controlled Intersection (3ST):

N_{spf-3ST}=exp[-9.86 + 0.79 In(AADT_{maj}) + 0.49 In(AADT_{min})]

2) 4-Leg 2-Way Stop Controlled Intersection (4ST):

N_{spf-4ST}=exp[-8.56 + 0.60 ln(AADT_{maj}) + 0.61 ln(AADT_{min})]

3) 4-Leg <u>Signalized</u> Intersection (4SG):

 $N_{spf-4SG} = exp[-5.13 + 0.60 ln(AADT_{maj}) + 0.20 ln(AADT_{min})]$

Base Conditions for Rural Two-Lane Intersections:

Intersection Skew Angle:0 degreesPresence of Left-Turn Lanes:NonePresence of Right-Turn Lanes:NoneLighting:None

Predicting Safety Performance

Total predicted crashes within the limits of the roadway being analyzed:

Combine predicted roadway segment and intersection related crashes to obtain the total predicted crashes for the entire segment

Safety Performance Functions and Crash Modification Factors for Rural Multilane Highway Segments

SPF Prediction Model for Base Conditions: Rural Multilane Highway Segments

 $N_{spf-ru} = e^{(a + b \times ln(AADT) + ln(L))}$

Undivided roadway sections

N_{spf-ru} = predicted total crash frequency for roadway segment base conditions (crashes/year)

- AADT = average annual daily traffic volume (vpd)
 - L = length of roadway segment (miles)
 - a & b = regression coefficients

SPF Prediction Model for Base Conditions: Rural Multilane Highway Segments

 $N_{spf-rd} = e^{(a + b \times ln(AADT) + ln(L))}$

Divided roadway sections

N_{spf-rd} = predicted total crash frequency for roadway segment base conditions (crashes/year)

AADT = average annual daily traffic volume (vpd)

L = length of roadway segment (miles)

a & b = regression coefficients

SPF Coefficients for Undivided Rural Multilane

Exhibit 11-5: SPF Coefficients for Total and Fatal-and-Injury Accidents on Undivided Roadway Segments (for use in Equations 11-7 and 11-8)

Crash Severity level	a	b	c	
4-lane total	-9.653	1.176	1.675	
4-lane fatal and injury	-9.410	1.094	1.796	
4-lane fatal and injury ^a	-8.577	0.938	2.003	

NOTE: a Using the KABCO scale, these include only KAB accidents. Crashes with severity level C (possible injury) are not included

SPF Coefficients for Divided Rural Multilane

Exhibit 11-8: SPF Coefficients for Total and Fatal-and-Injury Accidents on Divided Roadway Segments (for use in Equations 11-9 and 11-10)

Severity level	а	b	с
4-lane total	-9.025	1.049	1.549
4-lane fatal and injury	-8.837	0.958	1.687
4-lane fatal and injury ^a	-8.505	0.874	1.740

NOTE: ^aUsing the KABCO scale, these include only KAB accidents. Crashes with severity level C (possible injury) are not included.

Base Conditions for Undivided Rural Multilane

- Lane Width: 12 feet
- Shoulder Width: 6 feet
- Shoulder Type: Paved
- Sideslope: 1V:7H or flatter
- Lighting: None
- Automated Speed Enforcement: None

Base Conditions for Divided Rural Multilane

- Lane Width: 12 feet
- Right Shoulder Width: 8 feet
- Median Width: 30 feet
- Lighting: None
- Automated Speed Enforcement: None

Important note: the HSM says the following:

- The term "multilane" refers to facilities with four through lanes.
- Facilities with six or more lanes are not covered in Chapter 11.

Safety Performance Functions and Crash Modification Factors for Rural Multilane Highway Intersections

Table 1 Facility Types with Safety Performance Functions

			Intersections				
HSM Chapter	Undivided Roadway Segments	Divided Roadway Segments	Stop Co Minor	ntrol on Leg(s)	Signalized		
	Segments	Segments	3-Leg	4-Leg	3-Leg	4-Leg	
10 Rural Two-Lane Roads	>		~	>		•	
11 Rural Multi-lane Highways	~	~		\bigcirc			
12 Urban and Suburban Arterials	>	~	~	~	>	>	

From the HSM:

The SPF's for four-leg signalized intersections (4SG) on rural multilane highways have no specific base conditions and therefore, can only be applied for general predictions. **No CMF's are provided for 4SG intersections and predictions of average crash frequency cannot be made for intersections with specific geometric design and traffic control features**.

Rural Multilane Highway Intersections

 $N_{spf int} = e^{(a + b \times ln(AADT_{maj}) + c \times ln(AADT_{min}))}$

or

$$N_{spf int} = e^{(a + d \times ln(AADT_{total}))}$$

N_{spf int} = predicted total crash frequency for intersection base conditions (crashes/year)

AADT = average annual daily traffic volume (vpd)

a b c d = regression coefficients

Note: bottom equation form only used for four-leg signalized intersection fatal and injury crashes.

SPF Coefficients for STOP Controlled Intersections

Exhibit 11-11: SPF Coefficients for Three- and Four-leg Intersections with Minor road Stop Control for Total and Fatal-and-Injury Accidents (for use in Equation 11-11)

Intersection type/severity level	a	b	c	Overdispersion parameter (fixed k) ^a
4ST Total	-10.008	0.848	0.448	0.494
4ST Fatal and injury	-11.554	0.888	0.525	0.742
4ST Fatal and injury ^b	-10.734	0.828	0.412	0.655
3ST Total	-12.526	1.204	0.236	0.460
3ST Fatal and injury	-12.664	1.107	0.272	0.569
3ST Fatal and injury ^b	-11.989	1.013	0.228	0.566

NOTE[:] ^a This value should be used directly as the overdispersion parameter; no further computation is required.

^b Using the KABCO scale, these include only KAB accidents. Crashes with severity level C (possible injury) are not included.

SPF Coefficients for Signalized Intersections

Exhibit 11-12: SPF Coefficients for Four-leg Signalized Intersections for Total and Fataland-Injury Accidents (for use in Equations 11-11 and 11-12)

Intersection type/ severity level	а	b	С	d	Overdispersion parameter (fixed k)ª
4SG Total	-7.182	0.722	0.337		0.277
4SG Fatal and injury	-6.393	0.638	0.232		0.218
4SG Fatal and injury ^b	-12.011			1.279	0.566

NOTE[:] ^a This value should be used directly as the overdispersion parameter; no further computation is required. ^b Using the KABCO scale, these include only KAB accidents. Crashes with severity level C (possible injury) are not included.

Predicting Safety Performance

Total predicted crashes within the limits of the roadway being analyzed:

Combine predicted roadway segment and intersection related crashes to obtain the total predicted crashes for the entire segment

Safety Performance Functions and Crash Modification Factors for Urban and Suburban Arterial Highway Segments

Important note: the HSM says the following: "Chapter 12 does not address arterial facilities with six or more lanes."

2014 Supplement to 1st Edition

A crash modification factor (CMF) is used to compute the expected number of crashes after implementing a <u>countermeasure</u> on a road or intersection. The Crash Modification Factors Clearinghouse provides a searchable online database of CMFs along with guidance and resources on <u>using CMFs</u> in road safety practice. It also provides guidance to researchers on best practices for <u>developing</u> high quality CMFs.

Recently Added CMFs

Install pedestrian	Install intersection		
countdown timer	conflict warning systems		
CME: A DE	(ICWS) for two-lane at		
CMF: 0.85	two-lane intersections		
CRF: 15	CMF: 0.7		
Crash type: Other	CRF: 30		
Crash severity: All	Crash type: All		
	Install pedestrian countdown timer CMF: 0.85 CRF: 15 Crash type: Other Crash severity: All		

Crash severity: Serious injury, Minor injury

64

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry at karen.scurry@dot.gov

Where do we get help on the HSM?

www.HighwaySafetyManual.org

- Online training (webinar series videos)
- Links to related tools (SafetyAnalyst, IHSDM)
- User discussion forum

- We need quantitative estimates of safety performance for many planning and project development decisions.
- More reliable estimates lead to more safety cost-effective decision making.
- The estimation methods in the HSM are based upon good science/research and improve upon much of current practice.

Decisions requiring quantitative safety estimates:

- Identifying sites with the most potential for crash frequency or severity reduction
- Identifying crash patterns and treatments to address those patterns
- Conducting economic appraisals of projects
- Evaluating the crash reduction benefits of implemented treatments
- Estimating the effects of design decisions on crash frequency and severity

Quantifying safety facilitates tradeoff analysis...

HSM methods complement design guidelines...

Why should we use the HSM? HSM estimates the safety effects of design decisions...

Key Safety Principles and Design

Knowledge is imprecise, judgment is essential

- Meeting standards does not necessarily make a highway safe
- Some Important
 features of highways
 not determined by
 standards
 - e.g., "large" radius right turn lanes

Role of Road Design in Crash Prevention

Design can reduce:

- Incidents of human error
 Chance of human error resulting in crash
 Severity of the consequences of crashes
- How a particular section of highway or an intersection is built (Engineering) and how it is operated impact both the number and severity of crashes

Better methods improve the "bottom line"

- Better safety analysis tools to support decision making
 - More cost-effective safety investments
- More lives saved and injuries avoided per dollar invested

HSM methods improve upon current practice:

- Safety is measured in terms of expected (long-term) average crash frequency
- Alternative ways to estimate:
 - Crash counts
 - Statistical (predictive) methods
 - Combination of crash counts and predictive methods (Empirical Bayes method)

HSM predictive methods:

- Apply appropriate statistical methods to:
 - Model the variability in crash data
 - Compensate for regression to the mean
 - Account for changes in traffic volumes
- Include the following components:
 - Safety performance functions (SPFs)
 - Crash modification factors (CMFs)
 - State/local calibration factors
 - Empirical Bayes weightings

HSM predictive methods

PROactive rather than REactive

In summary:

- We need quantitative estimates of safety performance for many planning and project development decisions.
- More reliable estimates lead to more safety cost-effective decision making.
- The estimation methods in the HSM are based upon good science/research and improve upon much of current practice.

- Safety considerations should be a part of every transportation project
- See Your Mission Statement
- We can reduce crashes and save lives
- We need to start thinking proactively about safety

How good are the regression equations?

What does regression-to-the-mean mean?

Regression-to-the-mean (RTM) or selection bias refers to the bias created by the natural fluctuation of crash frequencies, which may lead one to draw incorrect conclusions about countermeasure effectiveness or sites with potential for improvement.

What does regression-to-the-mean mean?

What is Empirical Bayes?

Performance Measure

Accounts for RTM Bias

Yes

Average Crash Frequency	No
Crash Rate	No
Equivalent Property Damage Only (EPDO) Average Crash Frequency	No
Relative Severity Index	No
Critical Rate	Considers
Excess Predicted Average Crash Frequency using Method of Moments	Considers
Level of Service of Safety	Considers
Excess Expected Average Crash Frequency using SPFs	No
Probability of Specific Crash Types Exceeding Threshold Proportion	Considers
Excess Proportions of Specific Crash Types	Considers
Expected Average Crash Frequency with EB Adjustments	Yes
Equivalent Property Damage Only (EPDO) Average Crash Frequency with EB Adjustments	Yes

Excess Expected Average Crash Frequency with EB Adjustments

	No
	No
	No
	Yes
rs data variance; does not account for RTM bias	Yes
rs data variance; does not account for RTM bias	Yes
rs data variance; does not account for RTM bias	Expected average crash frequency plus/minus 1.5 standard deviations
	Predicted average crash frequency at the site
rs data variance; does not account for RTM bias	Yes
rs data variance; does not account for RTM bias	Yes
	Expected average crash frequency at the site
	Expected average crash frequency at the site
	Expected average crash frequency per year at the site

Method Estimates a Performance Threshold

Greater Reliability

TRG120A12153022CHI

83

What is Empirical Bayes?

What is the underlying assumption?

The <u>BIG</u> Assumption:

Average Crash Rate For 100 Years Average Crash Rate For 1 Year At 100 Similar Sites

How good are the regression equations?

Introduction to the HSM

- What is the HSM?
- Who should use the HSM?
- When should the HSM be used?
- How to use the HSM?
- Where can we get assistance?
- Why should we use the HSM?

Highway Safety Manual

Applications for Local Agency Safety Projects

Questions?

Larry@TrafficSafetyGuru.com