

Integrating Transit Operations and Traffic Operations

Demian Miller, AICP

Stops at Signalized Intersections: Near-side vs. Far-side

Far-side with bus bay

Near-side

Far-side, no bus bay

Stops at Signalized Intersections: Near-side vs. Far-side

Far-side with bus bay

Near-side

Far-side, no bus bay

Stops at Signalized Intersections: Near-side vs. Far-side

Near-side

Advantages:

- Stops are closest to signal/crosswalks
- Bus leaves signal at the head of the "platoon"
- Bus <u>may</u> board/alight during red – no wasted time

Disadvantages:

- Conflict with right turning vehicles
- When bus stops on green, thru vehicles are blocked
- Bus approaching on green is likely to miss the signal

Stops at Signalized Intersections: Near-side vs. Far-side

Far-side

Advantages:

- Does not impact right-turning traffic
- Thru queue can proceed thru light (depending on distance to intersection)
- Bus may proceed thru when approaching a green signal

Disadvantages:

- Stop is further from signal/crosswalks
- Bus cannot use red signal to effect boarding/alighting

Stops at Signalized Intersections: Near-side vs. Far-side

Far-side, with bus bay

Advantages:

- Does not impact right-turning traffic or thru traffic
- Bus may proceed thru when approaching a green signal
- May be positioned closer to signal than typical far-side stop

Disadvantages:

- Bus cannot use red signal to effect boarding/alighting
- Thru traffic often does not yield to bus resulting in bus delays

Pedestrian (and Bicycle) Safe Access to Transit

- Purpose/Need
- Districtwide Ped/Bike Safe Access to Transit Project
- Bus-stop Siting Considerations
- Intersection and Mid-Block Safety Tools

 Every bus stop is a pedestrian crossing, whether designed accordingly...

 Every bus stop is a pedestrian crossing, whether designed accordingly...
 or not.

How far are you willing to go out of your way for an "improved" crossing?

Would you walk:

How far are you willing to go out of your way for an "improved" crossing?

Would you walk:

 Most pedestrian crashes occur when pedestrians attempt to cross major roadways

- Most pedestrian crashes...
 - Occur when pedestrians attempt to cross major roadways
 - Involve adult pedestrians

- There is an over-representation of pedestrian crashes...
 - At night (about 40%)
 - In low income/auto-ownership areas

- Pedestrian safety and transit correlate:
 - Geographically
 - Demographically
- Providing safe access to transit
 - Benefits transit riders
 - Provides focal points for pedestrian safety investment along corridors—a benefit to all pedestrians!
 - Can improve route and roadway performance

Pedestrian (and Bicycle) Safe Access to Transit

- Purpose/Need
- Districtwide Ped/Bike Safe Access to Transit Project
- Bus-stop Siting Considerations
- Intersection and Mid-Block Safety Tools

Project Overview

Why?

 Recognition of relationship between higher ridership transit routes and higher-frequency bicycle and pedestrian crash corridors.

Project Overview

Objectives:

- Promote regional bike/pedestrian safety on roadways and transit corridors
- Identify short-term enhancements and longterm practices to create safe, comfortable, accessible, and welcoming bicycle/pedestrian environments
- Encourage multi-modal activity to generate economic vitality

Progress To-Date

- Conducted initial field reviews/assessments
- Developing initial recommendations
- Identified locations for more detailed analysis

Identifying Locations

- Identify & prioritize locations based on:
 - History of bicycle and pedestrian crashes
 - Land use information/pedestrian attractors
 - High-stop-level ridership transit agency input
 - ➤ Initially focused on "on-system" stop locations

Prioritizing Locations

• Developed a quantifiable ranking system:

Identifying Review Locations

Solicited transit agency input

 Additional considerations: Roadway • FDOT Work Program **Projects** Local Capital Projects AADT Pavement Conditions Number of Lanes Roadway • Speed Data Existing Lighting Existing Sidewalks/Bike Lanes Planning Areas (CRAs) Land Use

Activity Centers

Selected Locations

Locations Selected for Initial Field Reviews:

Field Reviews

- Identify contributing safety deficiencies impacting bicycle/pedestrian movement and access to transit
- Assessment of existing bicycle/pedestrian/ transit facilities and transit/traffic operations
- Observation of general travel patterns and behavior (traffic/pedestrian/bicycle/transit)

Observations/Considerations

Most recommendations fall into the following categories:

- Pedestrian Facilities
- Bicycle Facilities
- Transit Facilities
- Lighting
- Access Management
- Education/Enforcement
- Geometric design
- Signal modifications

Busch Blvd at Nebraska Ave:

Install/complete sidewalk

Relocate bus stops

Close to signalized intersections/protected

crossings

• Enhance Intersection Lighting:

- Enhance Corridor Lighting:
 - Maintenance

Still To-Come

- Finalize recommendations
 - Some may require further analysis
- Work program coordination
 - Incorporate strategies into the "scoping" process
- Project funding strategies
 - Identify potential funding sources
- Community engagement, input, and education

Further Information

Project website:

www.tampabaytrafficsafety.com/D7BPAT

Elba Lopez

Regional Transit/Intermodal Systems Planning Florida Department of Transportation District Seven 813-975-6403

Elba.lopez@dot.state.fl.us

Pedestrian (and Bicycle) Safe Access to Transit

- Purpose/Need
- Districtwide Ped/Bike Safe Access to Transit Project
- Bus-stop Siting for Pedestrians
 - Near-side/far side (pedestrian and traffic interactions)
 - Mid-block considerations
 - Other locational considerations
- Intersection and Mid-Block Safety Tools

Stop Placement Discussion

- What's good?
 - Nearside stops on arterial close to signal
 - Nearside and farside option on collector reduces need to cross arterial
 - Extra pavement acts as bus bay for northbound farside stop

Stop Placement Discussion

- Challenges?
 - Stops close to signal may not be accessible to bus until after signal turns green
 - Collector stopsencourage influencearea crossing
 - Southbound farside stop blocks thru and eastbound right turn

• What is a "mid-block" location?

Which location is likely to be the safest crossing?

- Why?
 - Median Refuge; Reduced threats from turning traffic

- What could make it better?
 - 1. Lighting; 2. consider cutting trees; 3. prohibit direct lefts

- Areas to Avoid:
 - 1. Median openings; 2. turn lanes; 3. standing queues

Other Considerations

- Proximity to generators attractors
- Ease of transfers
- Driveway conflicts
- Right-of-way/easements
- Drainage inlets

Pedestrian (and Bicycle) Safe Access to Transit

- Purpose/Need
- Districtwide Ped/Bike Safe Access to Transit Project
- Bus-stop Siting for Pedestrians
- Intersection and Mid-Block Safety Tools
 - Intersection Geometry
 - Pavement Markings & Signs
 - Signalization
 - Lighting
 - Mid-Block Crossing
 - Queue Jump and Bus Islands

Intersection Geometry: Curb Radii

Narrow radii preferred. Wide curb radii:

- Allow for higher speed turns which
- Reduce drivers' ability/willingness to yield, and
- Increase pedestrian crossing distance

Intersection Geometry: Curb Radii

Why not this one?

Intersection Geometry: Curb Radii

When large vehicles cannot be made to turn into inner lanes, consider right turn islands.

Right-Turn Island Design Details

Low-Speed Pedestrian Design Compared to Conventional Higher-Speed Design

High speed, head turner = low visibility of pedestrians

Slow speed, good angle = good visibility of pedestrians

Sign and Pavement Markings

Crosswalk Visibility

LATERAL 12" STRIPE

Crosswalk Visibility

Longitudinal markings with transverse markings – very visible

Textured Crosswalks: Effective?

What Pedestrian Sees

Textured Crosswalks: Effective?

What the driver sees

Retrofitting Textured Crosswalks

Yield to Pedestrians Signs

R10-15R

Right turn yield-topedestrians R10-15L

Left turn yield-topedestrians

Proper Push-Button Placement

MUTCD Recommendations:

Buttons at least 10' apart;

Signalization: Countdown Signal Operation

- Provide countdown signals throughout – easier to understand
- Recall to WALK
 - Default along major road
 - When both roads are "major"
- Provide max available time

Signalization: Protected-Permissive Left Turns

Signalization: Leading Pedestrian Interval

WALK comes on at least 3 seconds prior to the green signal; pedestrians enter crosswalk before turning vehicles compete for right-of-way.

Lighting: Midblock Crosswalk Design

Informational Report on Lighting Design for Midblock Crosswalks

FHWA-HRT-08-053 April 2008

Available at http://www.tfhrc.gov/safety/pubs/08053/08053.pdf

Lighting: Midblock Crosswalk Design

Fig 11. Traditional midblock crosswalk lighting layout

Fig 12. New design for midblock crosswalk lighting layout

Recommended lighting level: 20 lux at 5' above pavement

Lighting: Intersections

Apply same basic principals:

Sufficient illumination & Correct Placement

Fig 14. New design for intersection lighting layout for crosswalks.

Lighting: Intersections

Mid-Block Crossing – Medians & Islands Break Crossing Up; Simplify Challenge

Mid-Block Crossing: RRFB

(Rectangular Rapid Flashing Beacon)

Mid-Block: Crosswalk Design Mulitple Threat Crash Solution

- Advance stop or yield line
 - 1st car stops further back, opening up sight lines
 - 2nd car can be seen by pedestrian
 - car also has better chance of seeing pedestrian and stopping

Mid-Block Crossing: HAWK (High-intensity Activated crossWalK)

- Pedestrian Hybrid Beacon
- Sanctioned by FHWA/MUTCD
- Limited
 Experience in
 Florida Driver
 Expectations

Mid-Block Crossing: Two-Phase Signal

1. Pedestrian pushes button, waits, crosses to island

Mid-Block Crossing: Two-Phase Signal

2. Pedestrian proceeds to 2nd button, traffic resumes

Mid-Block Crossing: Two-Phase Signal

3. Pedestrian pushes button, completes crossing

Mid-Block Crossings: Channelization

- What is a "right-turn queue jump lane?"
 - Normally, bus must merge back-into thru lane
 - Results in delay for bus and poor stop placement for pedestrians

- With right-turn queue jump...
 - Bus proceeds to the stop bar in the right turn lane;
 conducts boarding/alighting
 - Bus get's special signal ahead of thru green

- Design Constraints
 - Turn lane must extend beyond peak hour thru queues for bus to access
 - Bus must reach stop with sufficient time prior to "jump" phase to board and alight.

Advantages

- Buses "jump" the queue for travel time savings;
 boardings/alightings likely to occur during red phase
- Stop placement can be optimized for safety and convenience of transfers
- Queue jump phase can incorporate "leading pedestrian interval" phase for disembarked passengers

- Disadvantages
 - Potential impact to right turn movements
 - Mostly right-turn-on-red
 - Reduction in signal time available for automobiles
 - Similar to Leading Pedestrian Interval (LPI)
 - Hey wait... Why not provide an LPI concurrent for the queue jump phase for folks that just got off the bus?!
 - Limited citizen and agency experience in Florida

- FDOT District 4 Pilot Project
 - Pilot project in District 4 at SR-7/US441 and Prospect Road (Tamarac)
 - Includes QPL for bus signal
 - Chosen because of simplicity/low volumes
 - Evaluation on-going
 - Driver behavior
 - Bus "if-then-else" analysis

Bus Island Concept

 FDOT District 4 Oakland Park Boulevard Corridor Study

Bus Island Concept

HART MetroRapid Bus Island

Southbound MetroRapid Stop at Nebraska Ave. (US 41) and Twiggs St.

Original Grass Right-Turn Island

MetroRapid Pad Station Under Construction

Bus Island Concept

Memorial Drive @ Rockbridge Road (DeKalb Co./Atlanta) Bus Queue Jump

Questions/Discussion

- Bus/Traffic Interaction
 - Stop Location
 - Bus Bays
- Ped/Bike Safe Access to Transit
 - Purpose
 - DW Project
 - Stop Placement
 - Safety Tools

PDH's for Florida P.E.'s

Download the PDH form and complete it

- Email to Safety Academy PDH coordinator: Larry@HagenConsultingServices.com
- or you may Fax to 866-426-5153
- You will receive a certificate for 1 PDH
- Need a separate form for each session

PDH's for Florida P.E.'s

Download PDH form at:
 http://www.tampabaytrafficsafety.com/SitePages
 /Home.aspx then go to General Resources under the Safety Academy tab.

AICP CM Credit

"This session has been submitted for AICP CM credit."

(The American Institute of Certified Planners)

Questions? Need Assistance?

Dennis K. Filloon
D7 Safety Academy Coordinator
The Filloon Group, LLC

Tallahassee, Florida

Phone: (850) 510-0095

Email: dennis5846@earthlink.net