

Session 8:

Benefit to Cost (B:C) Calculations

Plus Net Present Value (NPV) Calculations

New Work Program Guidelines

Anthony Chaumont, PE December 18,2013

Workshop Series

Wed. Dec. 4
Safety Funding
Categories/Requirements/Conditions

Wed. Dec. 11
Is Your Project Feasible? What's Next and How
Do We Move Forward?

Wed. Dec. 18
B/C Calculations plus NPV Calculations – New
WP Guidelines

2014

Wed. Jan. 8	Safety Projects & The Local Agency Program (LAP)
Wed. Jan. 15	Development of the Safety/LAP Project Schedule for Funding Purposes
Wed. Jan. 22	Safety/LAP Project Development
Wed. Jan. 29	Key to Successful Safety Programs

Today's Presentation

B/C Calculations
plus NPV
Calculations –
New WP
Guidelines

Agenda

- What is BC?
- What is NPV?
- Manual Calculation Steps
- Filling Out the Spreadsheet
- Which One to Use?

What is Benefit to Cost Ratio?

Highway Safety Improvement Manual

"A benefit/cost analysis compares all of the benefits associated with a countermeasure (e.g., crash reduction, etc.), expressed in monetary terms, to the cost of implementing the countermeasure."

(Estimated Annual Benefit) / (Estimated Annual Cost)

Historical Crash Data Benefit

- Total Number of Crashes
- Crash Reduction Factor
- Cost per Crash
- → Annualized Estimated Benefit(Crashes)(Reduction)(Cost per Crash)

Total Number of Crashes

- Department of Highway Safety Motor Vehicles (DHSMV)
- FIRES Portal
- Law Enforcement
- Crash Data Management System (CDMS)
- Crash Analysis Reporting System (CARS)
- Signal Four
- → Identify Number of Crashes

Crash Reduction Factor (CRF)

- "Multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure"
 - http://www.cmfclearinghouse.org/
- Florida Crash Reduction Factors
 - http://www.dot.state.fl.us/researchcenter/Completed_Proj/Summary_SF/F
 DOT BD015 04 rpt.pdf

Crash Reduction Factor (CRF)

- CMF (Crash Modification Factor)
- CRF as Percentage (+/-)
- Quality (Star Rating)
- Crash Type
- Crash Severity
- Area Type

▼ Countermeasure: Install a traffic signal										
CMF	CRF(%)	Quality	Crash Type	Crash Severity	Area Type	Reference				
0.56 [B]	44	会会会会会	All	All	Rural	Harkey et al., 2008				
0.23 [B]	77	***	Angle	All	Rural	Harkey et al., 2008				
0.33	67	会会会会会	Angle	Fatal,Serious Injury,Minor Injury	Urban	McGee et al., 2003				
0.4 [B]	60	会会会会会	Left turn	All	Rural	Harkey et al., 2008				
1.58 [1]	-58	会会会会会	Rear end	All	Rural	Harkey et al., 2008				
0.86	14	***	All	Fatal,Serious Injury,Minor Injury	Urban	McGee et al., 2003				

Crash Reduction Factor (CRF)

Factors can be combined

$$CRF_{Ti} = 1 - [(1 - CRF_{1i}) * (1 - CRF_{2i}) * ... * (1 - CRF_{ni})]$$

<u>example</u>

Is the CRF for two improvements with 25% and 15% equal to 40%?

1-((1-CFR1)x(1-CRF2))

1-((1-0.25)x(1-0.15))

= 0.36

= 36% CRF

Cost Per Crash

Statewide Values used from FDOT for SHS roadways

Highway Safety Improvement Program Guide (HSIPG) Cost / Crash by Facility Type										
Facility Type		Divided		Undivided						
	Urban	Suburban	Rural	Urban	Suburban	Rural				
2-3 Lanes	\$85,566	\$141,990	\$257,007	\$102,679	\$224,447	\$386,705				
4-5 Lanes	\$113,203	\$178,527	\$355,526	\$80,727	\$152,430	\$108,519				
6+ Lanes	\$105,370	\$129,058	\$505,539	n/a	n/a	n/a				
Interstate	\$134,415	n/a	\$269,193	n/a	n/a	n/a				
Turnpike	\$116,801	n/a	\$221,451	n/a	n/a	n/a				

Cost Per Crash

Use 50% of the SHS value for local roadways

Local Agency Cost per Crash by Facility Type (2009-2011)											
		Divided		Undivided							
Facility Type	Urban	Suburban	Rural	Urban	Suburban	Rural					
2-3 Lanes	\$48,862	\$71,195	\$133,076	\$59,784	\$101,317	\$208,205					
4-5 Lanes	\$46,434	\$71,889	\$136,106	\$44,362	\$95,536	\$31,366					
6+ Lanes	\$50,957	\$62,138	\$161,441	N/A	N/A	N/A					
Interstate	\$66,733	N/A	\$126,026	N/A	N/A	N/A					
Turnpike	\$58,213	N/A	\$92,073	N/A	N/A	N/A					

These values are to be aplied to crashes on off-system roadways. Revised 04/01/13.

Cost

- Total Improvement Cost
- Engineering Estimate
 - Structures
 - Roadway
 - Signs and Marking
 - Utilities

- Maintenance of Traffic
- Mobilization
- Design
- Right of Way
- Life of Improvement
- Capital Recovery Factor (CRF)
- → Annualized Estimated Cost (Improvement Cost)(Capital Recovery)

Capital Recovery Factor (CRF)

- Converts a present value into a equal annual payments over a time period at a specified interest rate.
- Interpreted as the value of uniform payments for n years such that the present value is equal to one dollar at interest rate i.
- → Annualized Estimated Cost

<u>example</u>

- Calculate the benefit to cost ratio for Installing a traffic new signal at along an urban 2 lane urban undivided highway with the following annual crash history:
 - 4 Angle
 - 1 Left-turn
 - 3 Rear-end

Calculate the Benefit

- Urban 2 lane urban undivided highway.
- Crashes per year:
 - 4 Angle
 - 1 Left-turn
 - 3 Rear-end

- Crash Cost = \$102,679
- Crash Reduction Factors:
 - Angle = 77%
 - Left-turn = 60%
 - Rear-end = -58%

 $[(4 \times 77\%) + (1 \times 44\%) + (3 \times -58\%)] \times $102,679 = $199,197$ Annual Benefit

Calculate the Cost

- Install new signal
- Improvement Life
- Interest Rate
- Capital Recovery

- Crash Cost = \$450,000
- Life = 10 years
- i = 4%
- CRF = $(0.04(1+0.04)^10)$

$$(1+0.04)^10-1$$

$$= 0.123$$

\$450,000 x 0.123 = \$55,481 Annual Cost

Put it all together

Benefit / Cost =

\$199,197 Annual Benefit

\$55,481 Annual Cost

= 3.58 BC

Work Program Instructions

Chapter 31: Safety Section B, Page 2

"Highway safety improvement projects are eligible for HSP funding if they meet one of the following minimum requirements: Address a key highway safety problem area from the Florida Strategic Highway Safety Plan and net present value (NPV) greater than 0."

Work Program Instructions

FY 14/15 - 18/19

September 30, 2013

Revised December 11, 2013

Work Program Instructions

Caveats

- Projects not meeting NPV
 requirements but have supporting
 documentation to warrant the
 project as a potential safety project
 will be evaluated on a case by case
 basis.
- All projects not meeting NPV requirements will require approval by the state Safety Office.

Work Program Instructions

FY 14/15 - 18/19

September 30, 2013

Revised December 11, 2013

Work Program Instructions

Caveats

- Acquisition of right of way (R/W) should be limited to only projects that are required to alleviate the immediate safety problem and to achieve the three year concept to construction goal.
- As specified in Section 1533 of MAP-21, HSP funds may not be used for any program to purchase, operate, or maintain an automated traffic enforcement system (speeding or red-light) in fiscal years 2013 and 2014, unless such systems are used to improve safety in school zones.

Work Program Instructions

FY 14/15 - 18/19

September 30, 2013

Revised December 11, 2013

What is Net Present Value?

Highway Safety Improvement Manual

"Expresses the difference between the discounted costs and discounted benefits of a safety improvement project."

(Sum of Discounted Benefit) - (Estimated Cost)

What is Net Present Value?

Highway Safety Improvement Manual

Two basic purposes:

- Used to determine which countermeasure(s) provides the most cost-efficient means based on the countermeasure(s) with the highest NPV.
- It also can determine if a project is economically justified meaning a project has a NPV greater than zero (or the benefits are greater than the costs).

- Total Benefit (Same As before)
 - Number of Crashes
 - Crash Reduction Factor
 - Cost Per Crash

- Discount Rate
 - 1 / ((1+i)^n)
 - Create a table with values for each year of the improvement life
 - Apply discount to each year
- → Sum the benefit for each year

<u>example</u>

- Calculate the net present value for Installing a traffic new signal at along an urban 2 lane urban undivided highway with the following annual crash history:
 - 4 Angle
 - 1 Left-turn
 - 3 Rear-end

Calculate the Benefit

- Urban 2 lane urban undivided highway.
- Crashes per year:
 - 4 Angle
 - 1 Left-turn
 - 3 Rear-end

- Crash Cost = \$102,679
- Crash Reduction Factors:
 - Angle = 77%
 - Left-turn = 60%
 - Rear-end = -58%

 $[(4 \times 77\%) + (1 \times 44\%) + (3 \times -58\%)] \times $102,679 = $199,197$ Annual Benefit

Calculate Discount Factor for each year of the lifecycle

Year	1	2	3	4	5	6	7	8	9	10
Estimated Benefits	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197	\$199,197
Discount Factor	0.962	0.925	0.889	0.855	0.822	0.790	0.760	0.731	0.703	0.676
Discounted Benefits	\$191,536	\$184,169	\$177,086	\$170,275	\$163,726	\$157,428	\$151,374	\$145,551	\$139,953	\$134,571

Sum of the benefit = \$1,615,688

Total Improvement Cost = \$450,000

Put it all together

Benefit - Cost =

\$1,615,668 Benefit - \$450,000 Cost

= \$1,165,668 NPV

Is there an easier way?

11. CRASH TYPES	NO. OF CRASHES		NO. OF CRASHES		CDE % TOTAL TO BL		14. CRASH INFORMATION FOR FACILITY					
A. FATAL AND SERIOUS INJURY	2009	2010	2011	CRF %	PREVENTED	A. COST PER CRASH:			\$ 102,679			
FATAL CRASHES					0.00	B. CRASH CLEANUP:			\$ 100	per y	ear	
SERIOUS INJURY CRASHES					0.00	C. INTEREST (DIS	COUNT) RATI	E:	4.0%			
					0.00	15. ANNUAL COS	T OF IMPRO	VEMENTS				
					0.00	TYPE	COST	LIFE (YR)	CRF	(COST/YR	
SUBTOTAL: CORRECTED	SEVER	RE INJU	IRY CRA	ASHES:	0.00	A. R.O.W.:						
B. MINOR INJURY CRASH TYPES	NO. C	OF CRAS	SHES	CRF	PREVENTED	B. P.E.C.E.I.:						
MINOR INJURY CRASHES					0.00	C. STRUCTURE:	\$ 450,000	10	0.123	\$	55,481	
					0.00	D. ROADWAY:						
					0.00	E. PAVEMENT:						
					0.00	F. SIGNAL:						
SUBTOTAL: CORRECTE	D MINC	OR INJU	IRY CRA	ASHES:	0.00	G. LIGHTING:						
C. ALL OTHER CRASHE TYPES	NO. C	F CRAS	SHES	CRF	PREVENTED	H. SUBTOTAL:	\$ 450,000	10		\$	55,481	
Angle	4.0	4.0	4.0	77%	9.24	I. CHANGE IN MAINTENANCE:				\$		
Left Turn	1.0	1.0	1.0	60%	1.80	J. CRASH CLEAN	UP:			\$	194	
Rear End	3.0	3.0	3.0	-58%	-5.22	K. TOTAL ANNUA	L COST:			\$	55,675	
					0.00	16. BENEFIT/COS	ST:				3.58	
SUBTOTAL: CORRECTED ALL OTHER CRASHES:					5.82	17. NET PRESENT VALUE						
D. TOTAL CRASHES (ALL TYPES) 8.00 8.00 8.00					A. CURRENT YEAR				2013			
12. TOTAL TO BE PREVENTED 1.94 1.94 1.94					5.82	B. PROJECT COMPLETION				2014		
13. BENEFIT						C. NPV				\$	1,165,668	
A. TOTAL CRASH BENEFIT					\$ 597,592	Prepared By:			Date:			
B. TOTAL ANNUAL BENEFIT:					\$ 199,197	Approved By:			Date:			

More Fun With Numbers

- \$100,000 Crash Cost
- 15 Crashes Per Year
- 20% Crash Reduction Factor
- \$500,000 Improvement Cost
- 10 Year Life
- BC = 2.71
- NPV = \$708,175

- \$100,000 Crash Cost
- 30 Crashes Per Year
- 20% Crash Reduction Factor
- \$1,000,000 Improvement Cost
- 10 Year Life
- BC = 2.71
- NPV = \$1,416,350

More Fun With Numbers

- \$100,000 Crash Cost
- 15 Crashes Per Year
- 20% Crash Reduction Factor
- \$500,000 Improvement Cost
- 14.0607 Year Life
- BC = 2.12
- NPV = \$442,111

- \$100,000 Crash Cost
- 30 Crashes Per Year
- 20% Crash Reduction Factor
- \$1,000,000 Improvement Cost
- 10 Year Life
- BC = 1.62
- NPV = \$442,111

Final Thoughts

- BC and NPV is both art and science
- There may not be a "cookie cutter" solution
- Complex situations may require manual calculations
- Not all countermeasure are in the CMF
- Application of multiple countermeasure require creativity
- Selection of countermeasure requires judgment
- Contact FDOT for technical questions and tips

Wed. Dec 4 Safety Funding
Categories/Requirem

Categories/Requirements/Conditions

Wed. Dec. 11 Is Your Project Feasible? What's Next and How

Do We Move Forward?

Wed. Dec. 18 B/C Calculations plus NPV Calculations – New

WP Guidelines

2014

Wed. Jan. 8 Safety Projects & The Local Agency Program

(LAP)

Wed. Jan. 15 Development of the Safety/LAP Project

Schedule for Funding Purposes

Wed. Jan. 22 Safety/LAP Project Development

Wed. Jan. 29 Key to Successful Safety Programs

Today's Presentation

Safety Projects & The Local Agency Program (LAP)

Questions? Need Assistance?

Anthony D. Chaumont, P.E.
Project Manager
<u>Tindale-Oliver & Associates, Inc.</u>

Phone: (813) 224-8862

Email: achaumont@tindaleoliver.com